Holomorphic differentials of certain solvable covers of the projective line over a perfect field

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covers of the Projective Line and the Moduli Space of Quadratic Differentials

Consider the Hurwitz space parameterizing covers of P branched at four points. We study its intersection with divisor classes on the moduli space of curves. As applications, we calculate the slope of Teichmüller curves parameterizing square-tiled cyclic covers. In addition, we come up with a relation among the slope of Teichmüller curves, the sum of Lyapunov exponents and the Siegel-Veech const...

متن کامل

Field of moduli versus field of definition for cyclic covers of the projective line

We give a criterion, based on the automorphism group, for certain cyclic covers of the projective line to be defined over their field of moduli. An example of a cyclic cover of the complex projective line with field of moduli R that can not be defined over R is also given.

متن کامل

Quasi-projective covers of right $S$-acts

In this paper $S$ is a monoid with a left zero and $A_S$ (or $A$) is a unitary right $S$-act. It is shown that a monoid $S$ is right perfect (semiperfect) if and only if every (finitely generated) strongly flat right $S$-act is quasi-projective. Also it is shown that if every right $S$-act has a unique zero element, then the existence of a quasi-projective cover for each right act implies that ...

متن کامل

Klein-Four Covers of the Projective Line in Characteristic Two

In this paper we examine curves defined over a field of characteristic 2 which are (Z/2Z)2-covers of the projective line. In particular, we prove which 2-ranks occur for such curves of a given genus and where possible we give explicit equations for such curves.

متن کامل

Cyclic Covers of the Projective Line, Their Jacobians and Endomorphisms

ζp ∈ C. Let Q(ζp) be the pth cyclotomic field. It is well-known that Q(ζp) is a CM-field. If p is a Fermat prime then the only CM-subfield of Q(ζp) is Q(ζp) itself, since the Galois group of Q(ζp)/Q is a cyclic 2-group, whose only element of order 2 acts as the complex conjugation. All other subfields of Q(ζp) are totally real. Let f(x) ∈ C[x] be a polynomial of degree n ≥ 5 without multiple ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2018

ISSN: 0025-584X

DOI: 10.1002/mana.201500347